

AJAX and PHP
Building Responsive Web Applications

Cristian Darie
Bogdan Brinzarea
Filip Cherecheş-Toşa
Mihai Bucica

Chapter 5
"AJAX chat and JSON"

For More Information: www.packtpub.com/ajax php/book

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter 5 "AJAX chat and JSON"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Cristian Darie is a software engineer with experience in a wide range of modern technologies,
and the author of numerous technical books, including the popular "Beginning E-Commerce"
series. Having worked with computers since he was old enough to press the keyboard, he initially
tasted programming success with a first prize in his first programming contest at the age of 12.
From there, Cristian moved on to many other similar achievements, and now he is studying
distributed application architectures for his PhD degree. He always loves hearing feedback about
his books, so don't hesitate dropping a "hello" message when you have a spare moment. Cristian
can be contacted through his personal website at www.cristiandarie.ro.

Bogdan Brinzarea has a strong background in Computer Science holding a Master and
Bachelor Degree at the Automatic Control and Computers Faculty of the Politehnica University of
Bucharest, Romania and also an Auditor diploma at the Computer Science department at Ecole
Polytechnique, Paris, France.

His main interests cover a wide area from embedded programming, distributed and mobile
computing, and new web technologies. Currently, he is employed as an Alternative Channels
Specialist at Banca Romaneasca, Member of National Bank of Greece, where he is responsible for
the Internet Banking project and coordinates other projects related to security applications and
new technologies to be implemented in the banking area.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Filip Cherecheş-Toşa is a web developer with a firm belief in the future of web-based software.
He started his career at the age of 9, when he first got a Commodore 64 with tape-drive.

Back home in Romania, Filip runs a web development company named eXigo www.exigo.ro,
which is actively involved in web-based application development and web design. He is currently
a student at the University of Oradea, studying Computer Science, and also an active member of
the Romanian PHP Community www.phpromania.net.

Mihai Bucica started programming and competing in programming contests (winning many
of them), all at age twelve. With a bachelor's degree in computer science from the Automatic
Control and Computers Faculty of the Politehnica University of Bucharest, Romania, Bucica
works on building communication software with various electronic markets.

Even after working with a multitude of languages and technologies, Bucica's programming
language of choice remains C++, and he loves the LGPL word. Mihai also co-authored Beginning
PHP 5 and MySQL E-Commerce and he can be contacted through his personal website,
www.valentinbucica.ro.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

5
AJAX Chat and JSON

Online chat solutions have been very popular long before AJAX was born. There are numerous
reasons for this popularity, and you're probably familiar with them if you've ever used an Internet
Relay Chat (IRC) client, or an Instant Messenger (IM) program, or a Java chat applet.

AJAX has pushed online chat solutions forward by making it easy to implement features that are
causing trouble or are harder to implement with other technologies. First of all, an AJAX chat
application inherits all the typical AJAX benefits, such as integration with existing browser
features, and (if written well) cross-platform compatibility.

An additional advantage is that an AJAX chat application avoids the connectivity problems that
are common with other technologies, because many firewalls block the communication ports they
use. On the other hand, AJAX uses exclusively HTTP for communicating with the server.

Probably the most impressive AJAX chat application available today is Meebo
(http://www.meebo.com). We are pretty sure that some of you have heard about it, and if you
haven't, we recommend you have a look at it. The first and the most important feature in Meebo is
that it allows you to log in into your favorite IM system by using only a web interface. At the time
of writing, Meebo lets you connect to AIM or ICQ, Yahoo! Messenger, Jabber, or GTalk, and
MSN. You can access all these services from a single web page with a user friendly interface, with
no pop-up windows or Java applets.

Meebo isn't the only web application that offers chat functionality. Even if AJAX is very young, a
quick Google search on "AJAX Chat" will reveal several other applications.

It's time to get to work. In the rest of the chapter, we'll implement our own online chat application.
We'll use this occasion to learn about JSON (JavaScript Object Notation), which represents an
alternative to XML for representing data exchanged between the web browser and the web server.

Introducing JSON
JSON is a data format that you can use instead of XML for exchanging information between the
JavaScript client and the PHP server script. Interestingly enough, JSON's popularity increased
together with the AJAX phenomenon, although the AJAX acronym implies using XML.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 146

Because XML is a more popular and more widely supported format, we've chosen to use XML for
all examples in this book, except this one. However, if you like, it's fairly easy to update the other
code samples to use JSON instead of XML. (As you know, this AJAX Chat chapter also has a
version that uses XML, and you can compare them to see the differences.)

Perhaps the best short description of JSON is the one proposed by its official website,
http://www.json.org: "JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines to parse and generate."

If you're new to JSON, a fair question you could ask would be: why another data exchange
format? JSON, just as XML, is a text-based format that is easy to write and to understand for both
humans and computers. The key word in the definition above is "lightweight." JSON data
structures occupies less bandwidth than their XML versions.

To make an idea of how JSON compares to XML, let's take the same data structure and see how
we would represent it using both standards. In the Chat application you'll write, the server
composes messages for the client that would look like this, if written in XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 <clear>false</clear>
 <messages>
 <message>
 <id>1</id>
 <color>#000000</color>
 <time>2006-01-17 09:07:31</time>
 <name>Guest550</name>
 <text>Hello there! What's up?</text>
 </message>
 <message>
 <id>2</id>
 <color>#000000</color>
 <time>2006-01-17 09:21:34</time>
 <name>Guest499</name>
 <text>This is a test message</text>
 </message>
 </messages>
</response>

The same message, written in JSON this time, looks like this:
[
 {"clear":"false"},
 "messages":
 [
 {"message":
 {"id":"1",
 "color":"#000000",
 "time":"2006-01-17 09:07:31",
 "name":"Guest550",
 "text":"Hello there! What's up?"}
 },
 {"message":
 {"id":"2",
 "color":"#000000",
 "time":"2006-01-17 09:21:34",
 "name":"Guest499",
 "text":"This is a test message"}
 }
]
 }
]

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 147

As you can see, they aren't that different. If we disregard the extra formatting spaces that we
added for better readability, the XML message occupies 396 bytes while the JSON message has
only 274 bytes.

JSON is said to be a subset of JavaScript because it contains two basic structures: the object, and
the array. An object is an unordered collection of name/value pairs, defined in this form:

{ name1:value1, name2:value2, ... }

The array is an ordered list of values defined in this form:
[value1, value2, ...]

The type of the value can be an object, a string, a number, an array, true, false, or null. A string is
a collection of Unicode characters surrounded by double quotes. For escaping, we use the backslash.

For more detailed information please refer to http://www.json.org, which covers the
theory wonderfully.

Installing JSON
It's obvious that when you plan to use JSON, you need to be able to parse and generate JSON
structures in JavaScript and PHP. JSON libraries are available for most of today's programming
languages: ActionScript, C, C++, C#, Delphi, E, Erlang, Java, JavaScript, Lisp,Lua, ML and
Ruby, Objective CAML, OpenLazslo, Perl, PHP, Python, Rebol, Ruby, and Squeak.

For JavaScript, we'll use the library listed at http://www.json.org/js.html. The direct link to the
small JSON library is: http://www.json.org/json.js. The entire installation process consists in
copying this file to your application's folder, and referencing it from the files that need its functionality.

The JSON solution we're using for PHP is the library developed by Michal Migurski that can be
downloaded from http://mike.teczno.com/json.html. Installing the library implies simply
downloading the PHP class file, and copying it into the application's folder. Next we need to
reference it from our application by using the require_once directive like this:

require_once('JSON.php');

In order to effectively start using it, we need to instantiate the class:
$json= new Services_JSON();

Then you're ready to use it. The encode and decode methods allow us to encode a PHP object into
JSON format and to decode a JSON string into a PHP object.

Using JSON with JavaScript and PHP
A typical way to build a JSON structure in JavaScript:

var myMessages =
 {'messages' : [
 {'username': 'Guest0740',
 'message': 'This is a JSON message',
 'color': '#eeeeee'},
 {'username': 'Guest0740',
 'message': 'This is another JSON message',
 'color': '#eeeeee'}]};
alert(myMessages.toJSONString());

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 148

The first command defines an object called myMessages, which contains a single member called
messages, which at its turn contains an array containing two objects that are made of three
members (username, message, and color). In order to access the "This is another JSON message"
text, you could use the following syntax:

myMessages[0].messages[1].message

The following two code snippets show typical ways to read a JSON structures in JavaScript:
myMessagesJSON = myMessages.toJSONString();
myMessagesFromJSON = myMessagesJSON.parseJSON();

Or
myMessagesFromJSON = eval ('(' + myMessagesJSON + ') ');

The eval function is very fast but it can allow any JavaScript code to be executed, so it's generally
much safer to use the parseJSON method.

In PHP, you encode and decode JSON messages using the encode and decode methods. Let's take
the previous example and do something similar in PHP. A typical way to build a JSON structure
in PHP:

require_once('JSON.php');
$json = new Services_JSON();
$myMessages = array ('messages' =>
 array(
 array ('username' => 'Guest0740',
 'message' => 'This is a JSON message',
 'color' => '#eeeeee'),
 array('username' => 'Guest0740',
 'message' => 'This is another JSON message',
 'color' => '#eeeeee')));
echo $json->encode($myMessages);

A typical way to read a JSON structure in PHP is:
require_once('JSON.php');
$json = new Services_JSON();
$myMessagesFromJSON = $json->decode($myMessagesJSON);

Implementing AJAX Chat
Now, it's time to implement the AJAX chat application. We'll keep the application simple,
modular, and extensible. We won't implement a login module, support for chat rooms, the online
users list, etc. By keeping it simple we try to focus on what the goal of this chapter is: posting and
retrieving messages without causing any page reloads. We'll also let the user pick a color for her
or his messages, because this involves an AJAX mechanism that will be another good exercise.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 149

The chat application can be tested online at http://ajaxphp.packtpub.com, and it looks like in
Figure 5.1.

Figure 5.1: AJAX Chat

A novelty in this chapter is that you will have two XMLHttpRequest objects. The first one will
handle updating the chat window, and the second will handle the color picker (when you click on
the image, the coordinates are sent to the server, and the server replies with the color code).

The messages for the AJAX Chat are saved in a queue (a FIFO structure), whose functionality was
covered in Chapter 4, so that messages are not lost even if the server is slow, and they always get
to the server in the same order as you sent them. Unlike with other patterns you can find on
Internet these days, we also ensure we don't load the server with any more requests until the
current one is finished.

In order to have this example working you need the GD library. The installation
instructions in Appendix A include support for the GD library.

Time for Action—Ajax Chat
1. Connect to the ajax database, and create a table named chat with the following code:

CREATE TABLE chat
(
 chat_id int(11) NOT NULL auto_increment,
 posted_on datetime NOT NULL,
 user_name varchar(255) NOT NULL,
 message text NOT NULL,
 color char(7) default '#000000',
 PRIMARY KEY (chat_id)
);

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 150

2. In your ajax folder, create a new folder named chat.

3. Copy the palette.png file from the code download to the chat folder.

4. We will create the application starting with the server functionality. In the chat
folder, create a file named config.php, and add the database configuration code to it
(change these values to match your configuration):
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

5. Now add the standard error handling file, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

6. Create another file named chat.php and add this code to it:
<?php
// reference the file containing the Chat class
require_once('chat.class.php');
// reference the file containing the JSON class
require_once('JSON.php');
// create an instance of the JSON class
$json=new Services_JSON();
// retrieve the operation to be performed
$mode = $_POST['mode'];
// default the last id to 0
$id = 0;
// create a new Chat instance
$chat = new Chat();
// if the operation is SendAndRetrieve
if($mode == 'SendAndRetrieveNew')
{
 // retrieve the action parameters used to add a new message
 $name = $_POST['name'];
 $message = $_POST['message'];
 $color = $_POST['color'];
 $id = $_POST['id'];
 // check if we have valid values
 if ($name != '' && $message != '' && $color != '')
 {
 // post the message to the database
 $chat->postMessage($name, $message, $color);

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 151

 }
}
// if the operation is DeleteAndRetrieve
elseif($mode == 'DeleteAndRetrieveNew')
{
 // delete all existing messages
 $chat->deleteMessages();
}
// if the operation is Retrieve
elseif($mode == 'RetrieveNew')
{
 // get the id of the last message retrieved by the client
 $id = $_POST['id'];
}
// Clear the output
if(ob_get_length()) ob_clean();
// Headers are sent to prevent browsers from caching
header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/javascript');
// retrieve new messages from the server and send them in JSON format
echo $json->encode($chat->retrieveNewMessages($id));
?>

7. Create another file named chat.class.php, and add this code to it:
<?php
// load configuration file
require_once('config.php');
// load error handling module
require_once('error_handler.php');
// class that contains server-side chat functionality
class Chat
{
 // database handler
 private $mMysqli;
 // constructor opens database connection
 function __construct()
 {
 // connect to the database
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }
 // destructor closes database connection
 public function __destruct()
 {
 $this->mMysqli->close();
 }
 // truncates the table containing the messages
 public function deleteMessages()
 {
 // build the SQL query that adds a new message to the server
 $query = 'TRUNCATE TABLE chat';
 // execute the SQL query
 $result = $this->mMysqli->query($query);
 }
 /*
 The postMessages method inserts a message into the database
 - $name represents the name of the user that posted the message
 - $messsage is the posted message
 - $color contains the color chosen by the user
 */
 public function postMessage($name, $message, $color)
 {

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 152

 // escape the variable data for safely adding them to the database
 $name = $this->mMysqli->real_escape_string($name);
 $message = $this->mMysqli->real_escape_string($message);
 $color = $this->mMysqli->real_escape_string($color);
 // build the SQL query that adds a new message to the server
 $query = 'INSERT INTO chat(posted_on, user_name, message, color) ' .
 'VALUES (NOW(), "' . $name . '" , "' . $message .
 '","' . $color . '")';
 // execute the SQL query
 $result = $this->mMysqli->query($query);
 }
 /*
 The retrieveNewMessages method retrieves the new messages that have
 been posted to the server.
 - the $id parameter is sent by the client and it
 represents the id of the last message received by the client. Messages
 more recent by $id will be fetched from the database and returned to
 the client in JSON format.
 */
 public function retrieveNewMessages($id=0)
 {
 // escape the variable data
 $id = $this->mMysqli->real_escape_string($id);
 // compose the SQL query that retrieves new messages
 if($id>0)
 {
 // retrieve messages newer than $id
 $query =
 'SELECT chat_id, user_name, message, color, ' .
 ' DATE_FORMAT(posted_on, "%Y-%m-%d %H:%i:%s") ' .
 ' AS posted_on ' .
 ' FROM chat WHERE chat_id > ' . $id .
 ' ORDER BY chat_id ASC';
 }
 else
 {
 // on the first load only retrieve the last 50 messages from server
 $query =
 ' SELECT chat_id, user_name, message, color, posted_on FROM ' .
 ' (SELECT chat_id, user_name, message, color, ' .
 ' DATE_FORMAT(posted_on, "%Y-%m-%d %H:%i:%s") AS posted_on ' .
 ' FROM chat ' .
 ' ORDER BY chat_id DESC ' .
 ' LIMIT 50) AS Last50' .
 ' ORDER BY chat_id ASC';
 }
 // execute the query
 $result = $this->mMysqli->query($query);
 // initialize the response array
 $response = array();
 // add the clear flag to the response
 array_push($response,array('clear'=> $this->isDatabaseCleared($id)));
 // initialize the results array
 $results=array();
 // check to see if we have any results
 if($result->num_rows)
 {
 // loop through all the fetched messages to build the results array
 while ($row = $result->fetch_array(MYSQLI_ASSOC))
 {
 $id = htmlspecialchars($row['chat_id']);
 $color = htmlspecialchars($row['color']);
 $userName = htmlspecialchars($row['user_name']);
 $time = htmlspecialchars($row['posted_on']);
 $message = htmlspecialchars($row['message']);
 array_push($results,array('id' => $id ,

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 153

 'color' => $color ,
 'time' => $time ,
 'name' => $userName ,
 'message' => $message));
 }
 // close the database connection as soon as possible
 $result->close();
 }
 // add the results to the response
 array_push($response, array('results' => $results));
 return $response;
 }
 /*
 The isDatabaseCleared method checks to see if the database has been
 cleared since last call to the server
 - the $id parameter contains the id of the last message received by
 the client
 */
 private function isDatabaseCleared($id)
 {
 if($id>0)
 {
 // by checking the number of rows with ids smaller than the client's
 // last id we check to see if a truncate operation was performed in
 // the meantime
 $check_clear = 'SELECT count(*) old FROM chat where chat_id<=' . $id;
 $result = $this->mMysqli->query($check_clear);
 $row = $result->fetch_array(MYSQLI_ASSOC);
 // if a truncate operation occured the whiteboard needs to be reset
 if($row['old']==0)
 return 'true';
 }
 return 'false';
 }
}
?>

8. Create another file named get_color.php and add this code to it:
<?php
// the name of the image file
$imgfile='palette.png';
// load the image file
$img=imagecreatefrompng($imgfile);
// obtain the coordinates of the point clicked by the user
$offsetx=$_GET['offsetx'];
$offsety=$_GET['offsety'];
// get the clicked color
$rgb = ImageColorAt($img, $offsetx, $offsety);
$r = ($rgb >> 16) & 0xFF;
$g = ($rgb >> 8) & 0xFF;
$b = $rgb & 0xFF;
// return the color code
printf('#%02s%02s%02s', dechex($r), dechex($g), dechex($b));
?>

9. Let's deal with the client now. Start by creating chat.css and adding this code to it:
body
{
 font-family: Tahoma, Helvetica, sans-serif;
 margin: 1px;
 font-size: 12px;
 text-align: left
}

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 154

#content
{
 border: DarkGreen 1px solid;
 margin-bottom: 10px
}
input
{
 border: #999 1px solid;
 font-size: 10px
}
#scroll
{
 position: relative;
 width: 340px;
 height: 270px;
 overflow: auto
}
.item
{
 margin-bottom: 6px
}
#colorpicker
{
 text-align:center
}

10. Create a new file named index.html, and add this code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>AJAX Chat</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <link href="chat.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript" src="json.js" ></script>
 <script type="text/javascript" src="chat.js" ></script>
</head>
 <body onload="init();">
 <noscript>
 Your browser does not support JavaScript!!
 </noscript>
 <table id="content">
 <tr>
 <td>
 <div id="scroll">
 </div>
 </td>
 <td id="colorpicker">
 <img src="palette.png" id="palette" alt="Color
 Palette" border="1" onclick="getColor(event);"/>

 <input id="color" type="hidden" readonly="true" value="#000000"
/>

 (text will look like this)

 </td>
 </tr>
 </table>
 <div>
 <input type="text" id="userName" maxlength="10" size="10"
onblur="checkUsername();"/>
 <input type="text" id="messageBox" maxlength="2000" size="50"
 onkeydown="handleKey(event)"/>

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 155

 <input type="button" value="Send" onclick="sendMessage();" />
 <input type="button" value="Delete All" onclick="deleteMessages();"
/>
 </div>
 </body>
</html>

11. Create another file named chat.js and add this code to it:
/* chatURL - URL for updating chat messages */
var chatURL = "chat.php";
/* getColorURL - URL for retrieving the chosen RGB color */
var getColorURL = "get_color.php";
/* create XMLHttpRequest objects for updating the chat messages and
getting the selected color */
var xmlHttpGetMessages = createXmlHttpRequestObject();
var xmlHttpGetColor = createXmlHttpRequestObject();
/* variables that establish how often to access the server */
var updateInterval = 1000; // how many miliseconds to wait to get new
message
// when set to true, display detailed error messages
var debugMode = true;
/* initialize the messages cache */
var cache = new Array();
/* lastMessageID - the ID of the most recent chat message */
var lastMessageID = -1;
/* mouseX, mouseY - the event's mouse coordinates */
var mouseX,mouseY;
/* creates an XMLHttpRequest instance */
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 156

/* this function initiates the chat; it executes when the chat page loads
*/
function init()
{
 // get a reference to the text box where the user writes new messages
 var oMessageBox = document.getElementById("messageBox");
 // prevents the autofill function from starting
 oMessageBox.setAttribute("autocomplete", "off");
 // references the "Text will look like this" message
 var oSampleText = document.getElementById("sampleText");
 // set the default color to black
 oSampleText.style.color = "black";
 // ensures our user has a default random name when the form loads
 checkUsername();
 // initiates updating the chat window
 requestNewMessages();
}
// function that ensures that the username is never empty and if so
// a random name is generated
function checkUsername()
{
 // ensures our user has a default random name when the form loads
 var oUser=document.getElementById("userName");
 if(oUser.value == "")
 oUser.value = "Guest" + Math.floor(Math.random() * 1000);
}
/* function called when the Send button is pressed */
function sendMessage()
{
 // save the message to a local variable and clear the text box
 var oCurrentMessage = document.getElementById("messageBox");
 var currentUser = document.getElementById("userName").value;
 var currentColor = document.getElementById("color").value;
 // don't send void messages
 if (trim(oCurrentMessage.value) != "" &&
 trim(currentUser) != "" && trim (currentColor) != "")
 {
 // if we need to send and retrieve messages
 params = "mode=SendAndRetrieveNew" +
 "&id=" + encodeURIComponent(lastMessageID) +
 "&color=" + encodeURIComponent(currentColor) +
 "&name=" + encodeURIComponent(currentUser) +
 "&message=" + encodeURIComponent(oCurrentMessage.value);
 // add the message to the queue
 cache.push(params);
 // clear the text box
 oCurrentMessage.value = "";
 }
}
/* function called when the Delete Messages button is pressed */
function deleteMessages()
{
 // set the flag that specifies we're deleting the messages
 params = "mode=DeleteAndRetrieveNew";
 // add the message to the queue
 cache.push(params);
}
/* makes asynchronous request to retrieve new messages, post new messages,
delete messages */
function requestNewMessages()
{
 // retrieve the username and color from the page
 var currentUser = document.getElementById("userName").value;
 var currentColor = document.getElementById("color").value;
 // only continue if xmlHttpGetMessages isn't void
 if(xmlHttpGetMessages)

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 157

 {
 try
 {
 // don't start another server operation if such an operation
 // is already in progress
 if (xmlHttpGetMessages.readyState == 4 ||
 xmlHttpGetMessages.readyState == 0)
 {
 // we will store the parameters used to make the server request
 var params = "";
 // if there are requests stored in queue, take the oldest one
 if (cache.length>0)
 params = cache.shift();
 // if the cache is empty, just retrieve new messages
 else
 params = "mode=RetrieveNew" +
 "&id=" +lastMessageID;
 // call the server page to execute the server-side operation
 xmlHttpGetMessages.open("POST", chatURL, true);
 xmlHttpGetMessages.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttpGetMessages.onreadystatechange = handleReceivingMessages;
 xmlHttpGetMessages.send(params);
 }
 else
 {
 // we will check again for new messages
 setTimeout("requestNewMessages();", updateInterval);
 }
 }
 catch(e)
 {
 displayError(e.toString());
 }
 }
}
/* function that handles the http response when updating messages */
function handleReceivingMessages()
{
 // continue if the process is completed
 if (xmlHttpGetMessages.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttpGetMessages.status == 200)
 {
 try
 {
 // process the server's response
 readMessages();
 }
 catch(e)
 {
 // display the error message
 displayError(e.toString());
 }
 }
 else
 {
 // display the error message
 displayError(xmlHttpGetMessages.statusText);
 }
 }
}
/* function that processes the server's response when updating messages */
function readMessages()
{

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 158

 // retrieve the server's response
 var response = xmlHttpGetMessages.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Void server response." : response);
 // retrieve the JSON object correspondig to the responseText element
 responseJSON = xmlHttpGetMessages.responseText.parseJSON();
 // retrieve the flag that says if the chat window has been cleared
 clearChat = responseJSON[0].clear;
 // if the clear flag is set, we need to clear the chat window
 if(clearChat == "true")
 {
 // clear chat window and reset the id
 document.getElementById("scroll").innerHTML = "";
 lastMessageID = -1;
 }
 // initialize the arrays
 idArray = new Array();
 colorArray = new Array();
 nameArray = new Array();
 timeArray = new Array();
 messageArray = new Array();
 // retrieve the arrays
 for(i=0;i<responseJSON[1].results.length;i++)
 {
 // retrieve the arrays from the server's response
 idArray[i] = responseJSON[1].results[i].id;
 colorArray[i] = responseJSON[1].results[i].color;
 nameArray[i] = responseJSON[1].results[i].name;
 timeArray[i] = responseJSON[1].results[i].time;
 messageArray[i] = responseJSON[1].results[i].message;
 }
 // add the new messages to the chat window
 displayMessages(idArray, colorArray,
 nameArray, timeArray, messageArray);
 // the ID of the last received message is stored locally
 if(idArray.length>0)
 lastMessageID = idArray[idArray.length - 1]; // restart sequence
 setTimeout("requestNewMessages();", updateInterval);
}
/* function that appends the new messages to the chat list */
function displayMessages(idArray, colorArray, nameArray,
 timeArray, messageArray)
{
 // each loop adds a new message
 for(var i=0; i<idArray.length; i++)
 {
 // get the message details
 var color = colorArray[i];
 var time = timeArray[i];
 var name = nameArray[i];
 var message = messageArray[i];
 // compose the HTML code that displays the message
 var htmlMessage = "";
 htmlMessage += "<div class=\"item\" style=\"color:" + color + "\">";
 htmlMessage += "[" + time + "] " + name + " said:
";
 htmlMessage += message.toString();
 htmlMessage += "</div>";
 // display the message
 displayMessage (htmlMessage);
 }
}
// displays a message
function displayMessage(message)

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 159

{
 // get the scroll object
 var oScroll = document.getElementById("scroll");
 // check if the scroll is down
 var scrollDown = (oScroll.scrollHeight - oScroll.scrollTop <=
 oScroll.offsetHeight);
 // display the message
 oScroll.innerHTML += message;
 // scroll down the scrollbar
 oScroll.scrollTop = scrollDown ? oScroll.scrollHeight :
oScroll.scrollTop;
}
// function that displays an error message
function displayError(message)
{
 // display error message, with more technical details if debugMode is true
 displayMessage("Error accessing the server! "+
 (debugMode ? "
" + message : ""));
}
/* handles keydown to detect when enter is pressed */
function handleKey(e)
{
 // get the event
 e = (!e) ? window.event : e;
 // get the code of the character that has been pressed
 code = (e.charCode) ? e.charCode :
 ((e.keyCode) ? e.keyCode :
 ((e.which) ? e.which : 0));
 // handle the keydown event
 if (e.type == "keydown")
 {
 // if enter (code 13) is pressed
 if(code == 13)
 {
 // send the current message
 sendMessage();
 }
 }
}
/* removes leading and trailing spaces from the string */
function trim(s)
{
 return s.replace(/(^\s+)|(\s+$)/g, "")
}
/* function that computes the mouse's coordinates in page */
function getMouseXY(e)
{
 // browser specific
 if(window.ActiveXObject)
 {
 mouseX = window.event.x + document.body.scrollLeft;
 mouseY = window.event.y + document.body.scrollTop;
 }
 else
 {
 mouseX = e.pageX;
 mouseY = e.pageY;
 }
}
/* makes a server call to get the RGB code of the chosen color */
function getColor(e)
{
 getMouseXY(e);
 // don't do anything if the XMLHttpRequest object is null
 if(xmlHttpGetColor)
 {

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 160

 // initialize the offset position with the mouse current position
 var offsetX = mouseX;
 var offsetY = mouseY;
 // get references
 var oPalette = document.getElementById("palette");
 var oTd = document.getElementById("colorpicker");
 // compute the offset position in our window
 if(window.ActiveXObject)
 {
 offsetX = window.event.offsetX;
 offsetY = window.event.offsetY;
 }
 else
 {
 offsetX -= oPalette.offsetLeft + oTd.offsetLeft;
 offsetY -= oPalette.offsetTop + oTd.offsetTop;
 }
 // call server asynchronously to find out the clicked color
 try
 {
 if (xmlHttpGetColor.readyState == 4 ||
 xmlHttpGetColor.readyState == 0)
 {
 params = "?offsetx=" + offsetX + "&offsety=" + offsetY;
 xmlHttpGetColor.open("GET", getColorURL+params, true);
 xmlHttpGetColor.onreadystatechange = handleGettingColor;
 xmlHttpGetColor.send(null);
 }
 }
 catch(e)
 {
 // display error message
 displayError(xmlHttp.statusText);
 }
 }
}
/* function that handles the http response */
function handleGettingColor()
{
 // if the process is completed, decide to do with the returned data
 if (xmlHttpGetColor.readyState == 4)
 {
 // only if HTTP status is "OK"
 if (xmlHttpGetColor.status == 200)
 {
 try
 {
 //change the color
 changeColor();
 }
 catch(e)
 {
 // display error message
 displayError(xmlHttpGetColor.statusText);
 }
 }
 else
 {
 // display error message
 displayError(xmlHttpGetColor.statusText);
 }
 }
}
/* function that changes the color used for displaying messages */
function changeColor()
{

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 161

 response=xmlHttpGetColor.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Can't change color!" : response);
 // change color
 var oColor = document.getElementById("color");
 var oSampleText = document.getElementById("sampleText");
 oColor.value = response;
 oSampleText.style.color = response;
}

12. If you haven't already done so, copy json.js from http://www.json.org/json.js
to your project's folder.

What Just Happened?
First, make sure the application works well. Load http://localhost/ajax/chat/index.html
with a web browser, and you should get a page that looks like the one in Figure 5.1.

Technically, the application is split in two smaller applications that build the final solution:

• The chat application: Here we use AJAX for passing the messages between the
client and the server. The chat window contacts the server periodically to send any
messages that have been typed by the user, and retrieve the newly posted messages
from the server.

• The code for choosing a color: Here we use AJAX for calling PHP script that can
tell us the color that was clicked by the user on the color image. We use a palette
containing the entire spectrum of colors to allow the user pick a color for the text he
or she writes. When clicking on the palette, the mouse coordinates are sent to the
server, which obtains the color code.

If you analyze the code for a bit, the details will become clear. Everything starts with index.html.
The only part that is really interesting in index.html is a scroll region that can be implemented in
DHTML. A little piece of information regarding scrolling can be found at http://www.dyn-
web.com/dhtml/scroll/.

Basically, the idea for having a part of the page with a scrollbar next to it is to use nested layers. In
our example, the div scroll and its inner layers do the trick. The outer layer is scroll. It has a
fixed width and height and the most useful property of it is overflow. Generally, the content of a
block box is confined to the content edges of the box. In certain cases, a box may overflow,
meaning its content lies partly or entirely outside of the box. In CSS, this property specifies what
happens when an element overflows its area. For more details, please see overflow's specification,
at http://www.w3.org/TR/REC-CSS2/visufx.html.

The chat.js script contains the JavaScript part for our application. This file can be divided in
two parts: the one that handles choosing a color and the other that handles retrieving and
sending chat messages.

We will start with the color choosing functionality. This part, which in the beginning might seem
pretty difficult, proves to be easy to implement. Let's have a panoramic view of the entire process.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 162

We have a palette image that contains the entire spectrum of visible colors. PHP has two functions
that will help us in finding the RGB code of the chosen color: imagecreatefrompng and
imagecolorat. These two functions allow us to obtain the RGB code of a pixel given the x and y
position in the image. The position of the pixel is retrieved in the getMouseXY function in the
JavaScript code.

The getColor function retrieves the RGB code of the color chosen by the user when clicking the
palette image. First of all it retrieves the mouse coordinates from the event. Then, it computes the
coordinates where the click event has been produced as relative values within the image. Using
this information, getColor initiates an asynchronous request to the get_color.php script, which
is supposed to return the color code associated with the clicked coordinate. The callback function
handleGettingColor is executed when the state of request is changed.

The handleGettingColor function checks to see when the request to the server is completed and
if no errors occurred, the changeColor function is called. This function changes the color of the
sample text "text will look like this" with the given code.

Now, let's now see how the chat works. By default when the page initializes and the onblur event
occurs, the checkUsername function is called. This function ensures that the name of the user
isn't empty by generating an arbitrary username.

On pressing the Send button, the sendMessage function is called. This function adds the current
message to the message queue to be sent to the server. Before adding it into the queue the function
trims the message by calling the trim function, and we encode the message using
encodeURIComponent to make sure it gets through successfully.

The handleKey function is called whenever a keydown event occurs. When the Enter key is
pressed the sendMessage function is called so that both pressing the Send button and pressing
Enter within the messageBox control have the same effect.

The deleteMessages function adds the delete message to the messages to be sent to the server.

The requestNewMessages function is responsible for sending chat messages. It retrieves a
message from the queue and sends it to the server. The change of state of the HTTP request object
is handled by the handleReceivingMessages function.

The handleReceivingMessages checks to see when the request to the server is completed and if
no errors occurred then the readMessages function is called.

The readMessages function checks to see if someone else erased all the chat messages and if so
the client's chat window is also emptied. In order to append new messages to the chat, we call the
displayMessages function. This function takes as parameters the arrays that correspond to the
new messages. It composes the new messages as HTML and it appends them to those already in
the chat by calling the displayMessage function. In the beginning, the displayMessage function
checks to see if the scroll bar is at the bottom of the list of messages. This is necessary in order to
reposition it at the end of the function so that the focus is now on the last new messages.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Chapter 5

 163

The last function presented is the init function. Its role is to retrieve the chat messages, to ensure that
the username is not null, to set the text's color to black, and to turn off the auto complete functionality.

For the error handling part, we use the displayError function, which calls the displayMessage
function in turn with the error message as parameter.

Let's move on to the server side of the application by first presenting the chat.php file. The server
deals with clients' requests like this:

• Retrieves the client's parameters
• Identifies the operations that need to be performed
• Performs the necessary operations
• Sends the results back to the client

The request includes the mode parameter that specifies one of the following operations to be
performed by the server:

• SendAndRetrieve: First the new messages are inserted in the database and then all
new messages are retrieved and sent back to the client.

• DeleteAndRetrieve: All messages are erased and the new messages that might exist
are fetched and sent back to the client.

• Retrieve: The new messages are fetched and sent back to the client.

The business logic behind chat.php lies in the chat.class.php script, which contains the
Chat class.

The deleteMessages method truncates the data table erasing all the information.

The postMessages method inserts all the new messages into the database.

The isDatabaseCleared method checks to see if all messages have been erased. Basically, by
providing the ID of the last message retrieved from the server and by checking if it still exists, we
can detect if all messages have been erased.

The retrieveNewMessages method gets all new messages since the last message (identified by its
id) retrieved from the server during the last request (if a last request exists; or all messages in
other cases) and also checks to see if the database has been emptied by calling the
isDatabaseCleared method. This function composes the response for the client and sends it.

The config.php file contains the database configuration parameters and the error_handler.php
file contains the module for handling errors.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX Chat and JSON

 164

Summary
At the beginning of the chapter we saw why one can face problems when communicating with
other people in a dynamic way over the Internet. We saw what the solutions for these problems are
and how AJAX chat solutions can bring something new, useful, and ergonomic. After seeing some
other AJAX chat implementations, we started building our own solution. Step by step we have
implemented our AJAX chat solution keeping it simple, easily extensible, and modular.

After reading this chapter, you can try improving the solution, by adding new features like:

• Chat rooms
• Simple command lines (joining/leaving a chat room, switching between chat room)
• Private messaging

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

AJAX and PHP: Building Responsive
Web Applications
AJAX is a complex phenomenon that means different things to different people. Computer users
appreciate that their favorite websites are now friendlier and feel more responsive. Web
developers learn new skills that empower them to create sleek web applications with little effort.
Indeed, everything sounds good about AJAX!

At its roots, AJAX is a mix of technologies that lets you get rid of the evil page reload, which
represents the dead time when navigating from one page to another. Eliminating page reloads is
just one step away from enabling more complex features into websites, such as real-time data
validation, drag and drop, and other tasks that weren't traditionally associated with web
applications. Although the AJAX ingredients are mature (the XMLHttpRequest object, which is the
heart of AJAX, was created by Microsoft in 1999), their new role in the new wave of web trends is
very young, and we'll witness a number of changes before these technologies will be properly used
to the best benefit of the end users. At the time of writing this book, the "AJAX" name is about
just one year old.

AJAX isn't, of course, the answer to all the Web's problems, as the current hype around it may
suggest. As with any other technology, AJAX can be overused, or used the wrong way. AJAX
also comes with problems of its own: you need to fight with browser inconsistencies,
AJAX-specific pages don't work on browsers without JavaScript, they can't be easily
bookmarked by users, and search engines don't always know how to parse them. Also, not
everyone likes AJAX. While some are developing enterprise architectures using JavaScript,
others prefer not to use it at all. When the hype is over, most will probably agree that the middle
way is the wisest way to go for most scenarios.

In AJAX and PHP: Building Responsive Web Applications, we took a pragmatic and safe approach
by teaching relevant patterns and best practices that we think any web developer will need sooner
or later. We teach you how to avoid the common pitfalls, how to write efficient AJAX code, and
how to achieve functionality that is easy to integrate into current and future web applications,
without requiring you to rebuild the whole solution around AJAX. You'll be able to use the
knowledge you learn from this book right away, into your PHP web applications.

We hope you'll find this book useful and relevant to your projects. For the latest details and
updates regarding this book, please visit its mini-site at http://ajaxphp.packtpub.com.

The book's mini-site also contains additional free chapters and resources, which we recommend
you check out when you have the time.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

What This Book Covers
Chapter 1: AJAX and the Future of Web Applications is an initial incursion into the world of
AJAX and the vast possibilities it opens up for web developers and companies, to offer a better
experience to their users. In this chapter you'll also build your first AJAX-enabled web page,
which will give you a first look of the component technologies.

Chapter 2: Client-Side Techniques with Smarter JavaScript will guide you through the
technologies you'll use to build AJAX web clients, using JavaScript, the DOM, the XMLHttpRequest
object, and XML. While not being a complete tutorial for these technologies, you'll be put on the
right track for using them together to build a solid foundation for your future applications.

Chapter 3: Server-Side Techniques with PHP and MySQL completes the theoretical foundation by
presenting how to create smart servers to interact with your AJAX client. You'll learn various
techniques for implementing common tasks, including handling basic JavaScript security and
error-handling problems.

Chapter 4: AJAX Form Validation guides you through creating a modern, responsive, and secure
form validation system that implements both real-time AJAX validation and server-side validation
on form submission.

Chapter 5: AJAX Chat presents a simple online chat that works exclusively using AJAX code, without
using Java applets, Flash code, or other specialized libraries as most chat applications do these days.

Chapter 6: AJAX Suggest and Autocomplete builds a Google Suggest-like feature, that helps you
quickly find PHP functions, and forwards you to the official help page for the chosen function.

Chapter 7: AJAX Real-Time Charting with SVG teaches you how to implement a real-time
charting solution with AJAX and SVG. SVG (Scalable Vector Graphics) is a text-based graphics
language that can be used to draw shapes and text.

Chapter 8: AJAX Grid teaches you how to build powerful AJAX-enabled data grids. You'll learn
how to parse XML documents using XSLT to generate the output of your grid.

Chapter 9: AJAX RSS Reader uses the SimpleXML PHP library, XML, and XSLT to build a
simple RSS aggregator.

Chapter 10: AJAX Drag and Drop is a demonstration of using the script.aculo.us framework to
build a simple list of elements with drag-and-drop functionality.

Appendix A: Preparing Your Working Environment teaches you how to install and configure the
required software: Apache, PHP, MySQL, phpMyAdmin. The examples in this book assume that
you have set up your environment and sample database as shown here.

At the book's mini-site at http://ajaxphp.packtpub.com, you can find the online demos for all
the book's AJAX case studies.

http://www.packtpub.com/ajax_php/book

For More Information: www.packtpub.com/ajax php/book

Where to buy this book
You can buy AJAX and PHP: Building Responsive Web Applications from the Packt Publishing
website: http://www.packtpub.com/ajax_php/book.

Free shipping to the US, UK, Europe, Australia, New Zealand and India.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet
book retailers.

www.PacktPub.com

http://www.packtpub.com/ajax_php/book
http://www.packtpub.com/ajax_php/book
http://www.packtpub.com

